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Abstract

We consider Decision Problems under Uncertainty where the options available to a
rational decision maker and the resulting outcome are related through a causal mech-
anism which is unknown to the decision maker. We study how a decision maker can
learn about this causal mechanism through sequential decision making as well as using
current causal knowledge inside each round in order to make better choices had he not
considered causal knowledge. We define a Causal Decision Problem and define a solution
criteria for such problems. Using such criteria, we propose a decision making procedure
in which an agent holds beliefs about her environment which are used to make a choice
that, within those beliefs, maximize expected utility and are updated according to the
observed outcome; i.e., the caused effect. As proof of concept, we present an implemen-
tation of this causal decision making model and apply it to a simple problem. We show
that the model achieves a performance similar to the classic Q-learning while it also
acquires a causal model of the environment.

1 Introduction

A fundamental part of intelligent reasoning is being able to make decisions under uncertain
conditions1 (Danks (2014), Lake et al. (2017), Pearl and Mackenzie (2018)). For this reason,
an intelligent decision maker must take into account the stochastic relation between actions2

and consequences.
From the von Neumann-Morgenstern decision making theory we know that if a ra-

tional3 decision maker knows this stochastic relation, then he must choose the action
that maximizes the expected utility of a utility function whose existence is guaranteed
(Von Neumann and Morgenstern (1944)). On the other hand, if a rational decision maker
does not know the probabilities of the ocurrence of certain outcomes, or consequences, given
his actions, then he must encode his personal, subjective, quantifications of any uncertainties
in a probability distribution p and choose the action that maximizes the expected utility with
respect to this probability distribution and a utility function which is unique up to affine
transformations(Savage (1954), Bernardo and Smith (2000), Gilboa (2009)).

By interacting with his environment, the decision maker can update his quantifica-
tions of uncertainty according to the observed data in order to maker better choices
(Bernardo and Smith (2000), Peterson (2017)). Learning by interaction has been extensively
studied in Computer Science using Reinforcement Learning (RL) (Sutton and Barto (1998)),
but the most common used techniques in this field are based on purely associative relations
and do not consider any high-level structure of the environment beyond what is expressable in
a Markov Decision Process (Garnelo et al. (2016)). A particular case of a higher level struc-
ture; i.e., beyond purely associative patterns, is the case of causal structure: a causal structure
encodes a series of cause-effect relations between events. Knowing cause-effect relations allows

1Uncertain conditions mean that if a set of choices is made available to a decision maker, then he can not
predict the precise consequence of his decision.

2Actions, options and choices to be used equivalently.
3To be explained in full detail later.
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a decision maker to add extra knowledge into the uncertainty of his environment which allows
to plan ahead his actions since he can predict what a certain action will cause (Spirtes et al.
(2000), Pearl (2018)).

Causal reasoning is a constant element in our lives since we constantly ask why : Why
did the train arrive late? Why do we get sick? Why this drug works? Looking for causes
is an everyday task and in fact causal reasoning is to befound at the very core of our minds
(Danks (2014), Lake et al. (2017)). It is even argued that in a more basic level the brain
is a causal inference machine which uses effects to figure out causes (Woodward (2003),
Friston (2010), Hohwy (2013), Clark (2015)). Causal claims also support reasoning of the
form if...hadn’t occurred then...wouldn’t have happened. It is argued by Pearl and Mackenzie
(2018) that imagining alternative scenarios is fundamental for humans to make causal reason-
ing. From a planning point of view, we have that causal relations allow us to manipulate our
environment and being able to predict effects of a given action (Spirtes et al. (2000).

Since human beings are known to learn causal models in sequential decision making
processes (Sloman and Hagmayer (2006), Nichols and Danks (2007), Meder et al. (2010),
Hagmayer and Meder (2013), Danks (2014)), and even though this learning is not perfect
(Rottman and Hastie (2014)), our hypothesis is that an autonomous agent can learn and use
causal information while interacting with an uncertain environment which is governed by a
fixed causal mechanism which is unknown to the agent.

The proposed way for an agent to learn from repeated interactions is by giving him beliefs
about the unknown causal structure of the environment. Those beliefs are to be used as if
they were the true causal model, and then are to be updated them after an outcome has been
observed. While the standard setting in RL is to model the agent-environment interaction
as an agent that moves from one state to another inside a model of the environment and
observing a reward as these transitions occur, we propose to model it as a game between the
decision maker and a player called Nature which will select his actions from the causal model
in response to what the decision maker has chosen. The agent, besides learning a policy to
choose actions, will also learn a causal model from the environment since the causal model
she forms will approximate the true model.

Learning a causal model of the environment allows to extract high-level insights of a
phenomena beyond associative descriptions of what is observed. A causal model is able to
explain why a particular decision was made since it allows to extract the causes and effects
of an agent’s actions. Once a causal model is acquired, an external user is able to reason
about what...if... statements that associative methods can not answer. When a decision
maker chooses an action out of many, a causal model allows to ask what would’ve happened
if another action was taken without actually performing the alternative action. Also, learning
a causal model of a certain environment would allow transferability of knowledge into similar
domains because the underlying cause-effect structure has been captured and could later be
used.

It is important to be careful when using the word explanation since it allows for several
uses in language, here we understand explanation as used by Woodward (2003) who considers
explanations where what is explained depends on other factors via some relationship that
holds as a matter of empirical fact rather than logical reasons.
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1.1 Outline

In the Section 2 the main concepts that serve as a foundation for this work will be described;
in particular, we will describe in detail what Causality means. Since this research proposal
asumes that a causal model governs an environment, a precise definition of causality will be
given along with the mathematical machinery to perform causal inference. Also, since the
entity that will be facing causal environments is a rational decision maker we will precisely
define, axiomatically, what does rationality means and which are the main theories of rational
decision making. At the end of the section, we will describe a mathematical theory which is
suitable to modelling interaction between rational decision makers since interactive learning
is considered.

After the main concepts have been exposed, in Section 3 a precise statement of the problem
that we propose to attack will be given, along with the Hypothesis that we attempt to defend
and believe that is the answer to the problem. Once the main problem has been stated, we
proceed in Section 4 to show previous attempts over this and similar problems. Finally, we
state the proposed solution for the problem as well as showing results of experiments performed
which implement a small toy example.
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2 Main Concepts

2.1 Causality

Since Causality is at the core of this proposal, we must make a careful treatment of it, both
in its definition and use. Leaving aside deeper philosophical and epistemological issues (see
Woodward (2003)), we consider causal structure as part of of the world itself, something that
holds deep inside the tissue of the physical world. We consider that the notion of causal
relations does not contradict the stochastic nature of the world in the sense of (Gilboa, 2009),
since we can both know that throwing a dice is both a stochastic phenomenon while also
acknowledging that throwing it caused a stochastic quantity to be realized. When talking
about a causal mechanism which controls an environment, we will consider invariance under
interventions as considered by Woodward (2003).

2.2 Difference between Causal Relations and Associative Relations

According to Pearl and Mackenzie (2018), there are three levels of causal reasoning: observing,
manipulating and counterfactual reasoning. Associative relations, which are called zero-level
causal relations by Cox and Wermuth (2004), belong to the first level in which only correlations
can be obtained from data. Correlations, or observational data by themselves offer a very
simple tool to establish relations of dependence between variables. A wide variety of spurious
(non-causal) correlations are known, and we can conclude from them that mere correlations
do not suffice to establish anything beyond what is observable. The core of causal reasoning
lies in the second and third levels the core of reasoning with causal relations, where it can be
observed what happens after some variable is directly manipulated, and where one can ask
what would happen if certain intervention had been done some other way.

Associative relations are based on correlation between events, or patterns of occurence to
be found in data, while causal relations are based in cause-efect patterns, which result from
some mechanism which is rooted in the nature of the observed events and can be obtained
from manipulation. In the words of Freedman (1997), “Causal inference is different, because a
change in the system is contemplated; for example, there will be an intervention. Descriptive
statistics tell you about the correlations that happen to hold in the data; causal models claim to
tell you what will happen to Y if you change X.” As an example, although a very simple one,
consider the following: a dog that lives as a pet in some household has observed that every day
he has food so he does not worry about eating or not, but any kid knows that whether he eats
or not depends on certain grown-up being present. The dog uses only observed occurrences
in order to obtain conclusions, while the kid can imagine what would happen if his parents
arrive home late.

It is important to mention that although in the usual examples of causal relations the cause
precedes temporally the effect this need not be a general rule. It suffices to show one example
of a causal relation in which the effect precedes temporally the cause in order to conclude that
cause-effect relations need not be in temporal order. For example, consider the example of
a barometer and a storm; in this case, the barometer drops first, but it is the storm which
actually causes this event (Woodward (2003), Pearl (2009)).It is conjectured in Pearl (2009)
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that in most natural phenomenon, the physical time coincides with at least one ordering of a
set of variables that agrees with a causal structure.

2.3 Advantages of Causal Models

Observational data has the limitation that any conclusion made is relative to the observed
sample, and that the models used to extract knowledge from them are based mostly on cor-
relations and sample information, which has severe limitations as mentioned above. Causal
models allow to evaluate stronger claims, such as counterfactual reasoning.

Counterfactuals and the ability to manipulate and observe are when a model needs to be
interpretable and explainable. The need for such models arise in applications such as public
policy design or clinical trials in order to test the effectiveness of a new drug.

Once a Causal Model is obtained, it can be used to predict the effect of certain interventions
as well to perform counterfactual reasoning in order to evaluate an intervention that has been
made; i.e., what if another intervention had been performed? This allows for manipulation
and planning of the environment. A Causal Model can allow for transferability of knowledge
to similar domains, since similar causal relations can hold in other domains. Citing Woodward
(2003), “causal relationships are relationships that are potentially exploitable for purposes of
manipulation and control.”

2.4 About definitions of Causality

Causality has been a difficult concept to define and several attempts have been made. In
fact, in mainstream statistics the term cause have been nearly banned as documented by
Pearl and Mackenzie (2018). Attempts to understand the meaning of cause has troubled
philosophers and scientists, from David Hume and John Stuart Mill to modern scientists as
Suppes (1970), Cartwright (1983), Spirtes et al. (2000), Pearl (2009), Spohn (2012), Hitchcock
(2018). In particular, Suppes and Reichenbach tried to define causation as an increase in the
probability of occurrence of one event when another event happened, which is a very intuitive
definition, which is stated as X causes Y if P (Y |X) > P (Y ), the problem with this definition
is that such an increase could happen for several reasons, such as Y being a cause of X , or
both having a common cause Z (Pearl and Mackenzie (2018)).

Several definitions of Causality exist in diverse contexts with diverse applications in mind,
such as the Topological Causality for Dynamical Systems (Harnack et al. (2017)), Lamport’s
Causality (Lamport (1978)), Granger’s Causality for Time Series (Granger (1969)), Suppes’
Causality (Suppes (1970)) each with its own mathematical framework. A review of several of
this theories, including Suppes’ and Granger’s can be found in Holland et al. (1985).

In some works on Causality (Spirtes et al. (2000), Pearl (2009)) the term causality is
defined in terms of common language and then the mathematical machinery required to model
causality is provided. In this way, causality becomes defined as what is modeled by causal
models, which are themselves defined as to model causality. This apparent circularity is deeply
studied by Woodward (2003). In fact, Judea Pearl never gives a formal definition of causality,
rather he prefers to build the machinery required to answer causal queries (Pearl (2009), Pearl
(2018)).
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Since causal claims in common language can have different logical form, in this work we give
a working definition of causality that allows a formal language for stating and manipulating
causal concepts and we will take the given definition as axiomatic. From this point, the words
causality, causal relation and similar terms will be understood in terms of the following formal
definition and not to be confused with the ordinary-language words that are spelled in the
same way.

2.5 Definition of Causality

We adopt the manipulationist intepretation of Causality as described in Woodward (2003).
According to the definition from Spirtes et al. (2000), causality is defined as a stochastic
relation between events. The intuition is that some event (or events) causes another event to
occurr according to some underlying mechanism.

Definition 2.1. Let (Ω,F ,P) a finite probability space, and consider a binary relation →⊆
F ×F which is:

• Transitive: If A → B and B → C for any A,B,C ∈ F then A → C.

• Irreflexive: For all A ∈ F it doesn’t hold that A → A.

• Antisymmetric: For A,B ∈ F such that A 6= B if A → B then it doesn’t hold that
B → A.

We will say that A is a cause of B (or that A causes B, A is the cause and B is the effect) if
A → B. It is important to note that an event may have more than one cause, and that not
necesarily each one of this causes is sufficient to produce the effect.

We will assume that for any event A ∈ F there are no causes lying outside F . It will also
be assumed that the relations expressed by → are the only causal relations in the environment.
This assumption can be interpreted as not allowing intermediate events between events known
to be causally related. For example, if in our space we have that striking a match causes fire,
we will not allow into consideration the underlying chemical reactions that cause fire from
friction. In this sense, we will say that striking a match is a direct cause of fire and this will
be the only causes considered herein (Spirtes et al. (2000)).

2.6 Representation into a Directed Acyclic Graph

The causal relations contained in → can be summarized in a graph G = (V,E) in the following
way: If A → B then the graph must contain a node A ∈ V representing A, a node B ∈ V
representing B and a directed edge e ∈ E connecting the respective nodes in the direction of
the causal relation.

Proposition 2.1. Given a causal relation → as in Definition 2.1 then the graph that is
obtained by considering nodes for events and edges for the causal relations as previously
described is a Directed Acyclic Graph.
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Proof. The graph is directed since the definition of causality imposes a direction between
events; namely, a direction between the cause and the effect. To see that the graph is acyclic,
suppose that a cycle A → B → C → A exists, this would imply, because of transitivity, that
A → A, which can not be since the relation is irreflexive.

Notice that since the graph is finite, there exist some nodes that does not have causes,
which are called exogenous. If an event A is caused by some other event, then we say it is
endogenous and we denote the set of its causes as Pa(A). It is proven in Kiiveri et al. (1984)
that at least one exogenous node exists in a causal graph.

2.6.1 Relation between the graph and probabilities

Given a Directed Acyclic Graph it is possible to obtain a probability measure that expresses
the conditional independence relations that are expressed in the graph (Koller and Friedman
(2009)), which we will call PG . For the DAG built from the causal relations, we require that
its correspondent PG satisfies the following conditions (Spirtes et al. (2000)):

• Markov Causality: an event V (or node in G) is independent of every other event A such
that A isn’t either a cause nor an effect of V given the causes of V .

• Causal Minimality: No proper sub-graph of G satisfies the Markov Causality condition.

• Causal Faithfulness: The Markov Causal condition contains all of the conditional inde-
pendence statements expressed by the DAG G.

Also, an extra pair of conditions, the first one known as Causal Sufficiency, which is about the
nature of the model: for any variable X in the model G there are no causes of X outside of the
model G (Spirtes et al. (2000), Pearl (2009), Sucar (2015)). The second required condition is
that the causal mechanism remains unchanged after interventions, this is called in (Woodward
(2003)) as invariantness, this basically means that an interventor does not breaks the causal
mechanism when intervening upon it. These conditions are required in an axiomatic fashion
so they will be taken as they are without further questioning.

2.7 Causal Graphical Models

A causal graphical model (CGM) consists of a set of random variables X = {X1, ..., Xn},
an acyclic directed graph (DAG) whose nodes are in correspondence with the variables in
X and whose edges represent relations of cause-effect. Also, the model, which up to this
point is nothing more than a Bayesian Network with causal semantics, is enriched with an
operator named do() which is defined over graphs and whose action is described as follows:
given X ⊆ X and x = {xi1 , xi2 , ..., xij} ∈ V al(X ) the action do(X = x) corresponds to assign
to each Xj ∈ X the value xxij

and to delete every incoming edges into the node corresponding

to each Xj in the graph G (Koller and Friedman (2009), Sucar (2015)). To apply the do()
operator over a variable (or set of variables) is also called as an intervention over the variable.
It is this interventional operator which separates associative models from causal models, since
it provides the solution of the “probability raising” attempts to define causality, since if X is
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a cause for Y then P (Y |do(X)) > P (Y ) (Pearl and Mackenzie (2018)). In fact, using the Do
operator we give a definition of a variable X causing Y .

Definition 2.2. Let G a Causal Graphical Model and PG its corresponding distribution and
let X and Y variables in the model. We say that X causes Y if

PG(Y |do(X = x) 6= PG(Y |do(X = x′).

It is required that the probability distribution that results from an intervention over a
variable is Markov compatible with the manipulated graphs as described by Pearl (2009);
this is, the resulting interventional distribution is equivalent to the product of the conditional
probability of every variable given its parents in the intervened graph (Spirtes et al. (2000),
Koller and Friedman (2009), Sucar (2015)).

2.7.1 The identifiability problem

The identifiability problem is to find under what are the conditions under which causal inquiries
can be answered in terms of purely observational data? It has been shown (Peters et al. (2012),
Mooij et al. (2016)) that if the Markov Causal condition and Causal Faithfulness hold, then
it is possible to identify the causal graph up to related variables without direction (Markov
equivalence).

2.7.2 Do-Calculus

The Do-Calculus (Pearl (1995), Pearl (2009)) is a set of rules for manipulating probabilistic
statements that involve interventions and, under certain conditions, allow them to be trans-
formed into statements that do not involve interventional data.

Some notation is important to be mentioned: Consider a causal graphical model G and
X, Y, Z disjoint sets of nodes of G. We denote by GX̄ the graph that is obtained by deleting
from G all of the edges that enter nodes in X . In the same way, GX is the graph obtained by
deleting the edges that emerge from X . Finally, GZX̄ is the graph obtained by deleting edges
incoming into X and outgoing from Z.

Theorem 2.1. (Pearl (2009))
Let G a CGM and PG the probability measure induced by the model; then, for disjoint sets of
nodes X, Y, Z,W it holds:

• If for the graph GX̄ it holds that Y is conditionally independent from Z given X and W ,
then

PG(Y = y|do(X = x), Z = z,W = w) = PG(Y = y|do(X = x),W = w).

• If for the graph GX̄Z it holds that Y is conditionally independent from Z given X and
W , then

P (Y = y|do(X = x), do(Z = z),W = w) = P (Y = y|do(X = x), Z = z,W = w).
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• Let Z(W ) the set of nodes in Z that aren’t ancestors of any node in W in the graph GX̄ .
If Y is conditionally independent from Z given X and W in the graph GX̄, ¯Z(W ), then

P (Y = y|do(X = x), do(Z = z),W = w) = P (Y = y|do(X = x),W = w).

Proof. See Pearl (2009).

Theorem 2.2. Peters et al. (2017)
The following statements hold:

• The Do-Calculus is complete; this is, sufficient for deriving every identifiable interven-
tional distribution (Huang and Valtorta (2006), Shpitser and Pearl (2006)).

• There exists an algorithm capable of finding all of the identifiable interventions (Tian
(2002), Huang and Valtorta (2006)).

• A necessary and sufficient criteria exists for the identifiability of interventional distribu-
tions (Shpitser and Pearl (2006), Huang and Valtorta (2006)).

Proof. See Peters et al. (2017).

The Do-Calculus rules provide a solution for the identifiability problem:

Corollary 2.1. (Pearl (2009)).
A distribution q = P (y1, ..., yk|do(x1), ..., do(xn)) is identifiable in a causal graphical model G
if there exists a finite sequence of transformations, where each one of them corresponds to any
of the rules of the Do-Calculus, that reduce q to a purely observational expression.

2.7.3 Use of Causal Graphical Models over other causal models

We choose to use specifically a Causal Graphical model because of the mathematical machinery
that exists around them and because Graphs are a model of Cognitive Processes, such as causal
reasoning (Glymour (2003), Danks (2014)). In this way, if an agent knows that a certain
environment is governed by causal relations, then a causal graphical model can be used to
model the process of causal reasoning of the agent in a way that resembles human reasoning.

2.8 Decision Theory

A Decision Problem under Uncertainty is a situation in which an agent must choose one out of
many actions with uncertain consequences. The most common theories for Decision Making
under Uncertainty are those from Von Neumann and Morgenstern (1944) and Savage (1954).
In the former theory it is assumed that the decision maker knows the stochastic relation
between actions and consequences 4, and in that case the theory guarantees that the decision
maker behaves as if he maximizes the expected value of an utility function. On the other
hand, if the decision maker doesn’t know the probabilities of observing an outcome given a

4Also known as decision under risk (Binmore (2008), Peterson (2017)).
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chosen action, then Savage’s theory guarantees that the decision maker behaves as if he had
in mind a subjective5 probability distribution and a utility function, and chooses the action
which maximizes the expected utility with respect to that subjective probability distribution
and utility function.

Both von Neumann and Savage’s Decision Under Uncertainty theories are known as the
classic theories in other areas, mostly in Economics. It is important to say that other Decision
Making theories exist, such as Prospect Theory (Kahneman and Tversky (1979)), Case-Based
Decision Theory (Gilboa and Schmeidler (1995)), among others that are out of the scope of
this work.

For what remains of this section, we follow Bernardo and Smith (2000) in his exposition of
Savage’s theory since it is the most suitable for our purposes, because we will be considering
decision makers that do not know all of their environment. Savage’s Decision Making theory,
together with von Neumann’s theory is what it is commonly known as classical decision
making.

2.8.1 Elements of a Decision Problem

A Decision Problem under Uncertainty (Bernardo and Smith (2000)) is composed by:

• A set Ω of states.

• A set A = {ai : i ∈ I} of actions.

• For each action ai, a partition Ei = {Ej : j ∈ J} of Ω. Define E = ∪i∈IEi.

• For each action ai, a set of consequences Ci = {cj : j ∈ J}. Define C = ∪i∈ICi

• A preference relation � defined over A which represent the decision-maker whishes.
It is assumed that the decision maker will choose among his options according to his
preferences, which are represented by �.

Since we are considering that a decision maker chooses an action a ∈ A, and then an uncertain
event E will occur which will then produce the consequence c, we will identify actions in A
as ai = {cj|Ej : j ∈ J}. As a technical assumption required for all of the math to work, we
require that elements of C belong to A. This is achieved by adding into A elements of the
form {c|Ω} for c ∈ C. This being said, we can extend the preference relation � to elements
of C and therefore indistinctively write c1 � c2 for c1, c2 ∈ C or a1 � a2 for a1, a2 ∈ A. We
require that E is an algebra6.

Definition 2.3. From the prerefence relation � we can derive some other relations between
actions:

(i) a1 ∼ a2 ⇔ a1 � a2 and a2 � a1

5Subjective here is a technical term meaning that the function is internal for the agent.
6An algebra of sets over X is a family of sets F ⊆ P(X) such that X ∈ F , Ac ∈ F for any A ∈ F and for

A,B ∈ F then A ∪B ∈ F (Ash and Doleans-Dade (2000))
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(ii) a1 ≻ a2 ⇔ a1 � a2 and it does not hold that a2 � a1.

Definition 2.4. A relation between events can be derived from � in the following way:

E � F ⇔ for all c1 � c2 it holds that {c2|E, c1|E
c} � {c2|F, c1|F

c}.

In this case, we say that F is not more likely than E. It can easily be shown that Ω ≻ ∅,
and a relation ∼ for events is defined in an analog way than for consequences.

Definition 2.5. Given some G ≻ ∅ we define a conditional preference relation �G as follows:

(i) a1 �G a2 ⇔ for all a {a1|G, a|Gc} � {a2|G, a|Gc}.

(ii) E �G F ⇔ for c1 �G c2{c2|E, c1|E
c} �G {c2|F, c1|F

c}

Definition 2.6. Two events E, F ∈ E are said to be independent if and only if for all c, c1, c2 ∈
C it holds:

(i) c ≻ {c2|E, c1|E
c} ⇒ c ≻F {c2|E, c1|E

c}.

(ii) c ≻ {c2|F, c1|F
c} ⇒ c ≻E {c2|F, c1|F

c}

2.8.2 Axioms of Coherence

We require the following axioms for the preference relation � which we will call Axioms
of Coherence or Rationality, and define a Rational decision maker as a decision maker who
will choose according to a preference relation and whose preferences satisfy the axioms
(Bernardo and Smith (2000), Gilboa (2009)).

Axiom 1: Comparability.

(i) There exists consequences c1, c2 such that c1 ≻ c2.

(ii) For all consequences c1, c2 and events E, F ∈ E either {c2|E, c1|E
c} � {c2|F, c1|F

c} or
{c2|F, c1|F

c} � {c2|E, c1|E
c}

We require that the decision maker is able to strictly prefer at least one action over another,
because if this weren’t the case then there would not be a decision problem, since any action
would lead to the same consequence. It is also required that the decision maker has preferences
over simple options.

Axiom 2: Transitivity.

(i) a � a for all a ∈ A.

(ii) If a � b and b � c for a, b, c ∈ A, then a � c.

11



Even though transitivity is a very intuitive requirement, its necessity is better explained in
terms of money pumps : consider c1, c2 and c3 such that c1 ≻ c2 and c2 ≻ c3 but c3 ≻ c1. In
this case, the decision maker would be willing to pay a strictly positive ammount to have c3
over c1, and to pay y > 0 to have c2 rather than c3, and an amount z > 0 in order to have c1
rather than c2, and then again to pay to have c3 over c1...

Axiom 3: Consistency.

(i) If a1 � a2 then for all G ≻ ∅ a1 �G a2.

(ii) If for some c1 ≻ c2 it holds that {c2|E, c1|E
c} � {c2|F, c1|F

c} then E � F .

(iii) If for some c ∈ C and G ≻ ∅ it holds that {c1|G, c|Gc} � {c2|G, c|Gc} then c1 �G c2.

The intuition behind condition (i) is that preferences between pure consequences should not
be affected by information about the uncertain events in E . Conditions (ii) and (iii) make
definitions 2.4 and 2.5 well defined concepts. In particular, condition (ii) formalises the idea
that preferences should not depend on relative likelihood. Condition (iii) commonly known as
the sure thing principle (Bernardo and Smith (2000)).

Axiom 4: Existence of Standard Events.
There exists a sub-algebra S of E and a function µ : S → [0, 1] such that:

(i) S1 � S2 if and only if µ(S1) � µ(S2).

(ii) If S1 ∩ S2 = then µ(S1 ∪ S2) = µ(S1) + µ(S2).

(iii) For any number α ∈ [0, 1] and independent events E, F , there is an event S, which is
called a standard event, such that µ(S) = α and S is independent from E and from F .

(iv) iv) If S1 is independent from S2 then µ(S1 ∩ S2) = µ(S1)µ(S2).

(v) v) If E independent of S, S independent from F and E independent from F then E ∼ S
implies that E ∼F S.

This axioms means that the decision maker has a mental procedure to generate a probability
distribution where one event is more likely than other if and only if it has a higher probabil-
ity. From the previous axioms, the preferences and uncertainties of a decision maker can be
quantified up to small intervals, but in order to assign a unique value the following axiom is
required.

Axiom 5: Precise measurement.

(i) If c1 � c � c2 then there exists a standard event S such that c ∼ {c2|S, c1|S
c}.

(ii) For each event E there exists a standard event S such that E ∼ S.

For a richer discussion, critiques and extensions of the coherence axioms we refer the reader
to Bernardo and Smith (2000), Binmore (2008), Gilboa (2009), Wakker (2010), Peterson
(2017).
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2.8.3 Subjective Probability and Utility

Subjective probability is a well defined mathematical object that, contrary to the frequentist
approach to probability, represents the degree of belief an agent has over the occurrence of
some phenomena. Frequentist probability can not answer questions like what is the probability
of a war in the middle east? since it is not a phenomena that can be repeated infinite times
in an independent way (Gilboa (2009), Peterson (2017)).

Subjective approachs to probability were developed by Bruno De Finetti (De Finetti
(1930)) and Frank Ramsey in 1926, however a more precise formulation was given by Savage
in his famous book “The Foundations of Statistics” (Savage (1954)). The formulation shown
here is the modern version of Savage’s Theory as exposed by Bernardo and Smith (2000).

Definition 2.7. Given a preference relation �, we define the (subjective) probability of an
event E ∈ E as the real number µ(S) associated with the standard event S such that E ∼ S.

The subjective probability thus defined satisfies all of the Kolmogorov’s axioms of probabil-
ity (Bernardo and Smith (2000)). So, we can use all of the mathematical machinery for classic
probability measures, including the definition of conditional probability, Bayes’ theorem, etc.

As a technical requirement we need to consider two extra options, one that is preferred
over every other consequence, which will be denoted as c∗ and other consequence c∗ which
the agent prefers every other consequence before c∗. This consequences need not have an
interpretation, but they can be thought of as heaven and hell respectively for obvious (at lest
in the Western hemisphery) reasons. Critiques of these extra technical consequences can be
found in Binmore (2008), Peterson (2017).

Definition 2.8. Consequences c∗ and c∗ are called respectively best and worst (extreme
consequences) if for any other consequence c ∈ C then c∗ � c � c∗. Decision problems in
which we add extreme consequences are called bounded decision problems.

Definition 2.9. Given a preference relation � in a bounded decision problem we define the
canonical utility u(c) = u(c|c∗, c

∗) of a consequence c ∈ C relative to the extreme conse-
quences c∗, c∗, as the real number µ(S) associated with any standard event S such that
c ∼ {c∗|S, c∗|S

c}.

2.8.4 Decision Criteria for Decision Problems

Proposition 2.2. For any bounded decision problem with extreme consequences c∗ and c∗ it
holds:

(i) For all c ∈ C, u(c|c∗, c
∗) exists and is unique.

(ii) The value of u(c|c∗, c
∗) is unafected by the occurrence of any event G ≻ ∅.

(iii) 0 = u(c∗|c∗, c
∗) ≤ u(c|c∗, c

∗) ≤ u(c∗|c∗, c
∗) = 1.
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Definition 2.10. For a bounded decision problem and any event G ≻ ∅ and a = {cj |Ej : j ∈
J} we define the conditional expected utility of a as

ū(a|c∗, c
∗, G) =

∑

j∈J

u(cj|c∗, c
∗)P (Ej|G).

If G = Ω we simply denote ū(a|c∗, c
∗, G) as ū(a|c∗, c

∗)

Theorem 2.3. For any bounded decision problem with extreme consequences c∗ ≻ c∗ and
any G ≻ ∅

a1 �G a2 ⇔ ū(a1) ≥ ū(a2). (1)

Proof. See Bernardo and Smith (2000) Chapter 2 “Foundations”, Proposition 2.22.

This result means that for any decision maker whose preferences satisfies axioms 1 through
5, the only election criteria that is compatible with the axioms is the maximization of expected
utility and thus establishes a normative criteria for decision making for rational agents. This
result establishes a complete ordering of the options, but it does not guarantees the existence
of an option for which the expected utility is maximum and further mathematical assumptions
are required over the utility function u in order to guarantee the existence of the maxmimum
utility option (Bernardo and Smith (2000)).

Notice that the expectations are taken with respect to the subjective probability measure,
and in fact Savage’s general result as stated in Gilboa (2009) guarantees the existence of a
utility function and a probability measure such that the preference relation is represented by
the expected utility of that function with respect to that probability measure. Here we define
the subjective probability directly from the coherence axioms.

In the particular case where the algebra E contains only the set Ω as its only element we
say that it is a decision problem without uncertainty and in this case applying the previous
Theorem we obtain the decision criteria which consist in maximizing the utility function.

The result extends previous work of Von Neumann and Morgenstern (1944) where it is
assumed that the decision maker knows the probabilties of the uncertain events.

2.9 Game Theory

A game arises when two or more rational decision makers, or players, have to make decisions
in a situation in which the outcome for each player is partly determined by the choices of other
players (Binmore (2008)). Game Theory is an area of Mathematics which is used to model
games. The basic assumptions of the theory is that each decision maker is rational, and that
they take into account their knowledge or expectations of other decision makers behavior.

In this section we will review the basic models of Game Theory that are required for this
thesis proposal, which are the normal-form game, and the extensive-form game.

2.9.1 Building blocks

The normal-form game models a situation in which two or more agents interact and where
each one of them will choose an action simultaneously. Also, it is assumed that all of the
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relevant aspects of the game are known for each player. We follow the exposition from
Osborne and Rubinstein (1994), Binmore (2007), Shoham and Leyton-Brown (2008).

Definition 2.11. A normal-form game is a tuple (N,A, (�i)i∈N) where:

• N is a finite set of players.

• A = A1 × ... × An, where each Ai is the set of available actions for player i. Each
a = (a1, ..., an) ∈ A is called an action profile.

• For each player i ∈ N , a preference relation �i defined over A.

A strategy or action profile is an element a ∈ A. Because of the decision-making crite-
ria shown in the last section we know that each player can replace his preferences �i for a
utility function ui. The prisoner’s dilemma is the most common example of a normal-form
game, where two suspects must either confess or remain silent about a crime and they can’t
communicate with each other. In this game, both of the players know the consequences of
each outcome and the rewards (utilities) associated with each outcome. In some cases, the
players do not know all of the relevant aspects of a game, such as the payoffs or the available
actions to other players. It is this situation that is modeled by normal-form Bayesian games
(Osborne and Rubinstein (1994), Shoham and Leyton-Brown (2008)).

Definition 2.12. A normal-form Bayesian game consists of:

• A set of states S.

• A finite set of players N .

• For each player: a set of actions Ai and as in the previous definition we define A =
A1 × · · · ×An.

• For each player: a finite set Ti of signals that are observable to player i.

• For each player: a signal function τi : S → Ti.

• For each player: a probability measure Pi defined over S such that P (τ−1
i (ti)) > 0 for

ti ∈ Ti.

• For each player: a rational preference relation �i defined over the set of probability
measures defined over A× S.

The interpretation of the elements of this model is as follows: the set S contains the
descriptions of the relevant characteristics for all players, each player has a priori beliefs over
this characteristics, which are stated by the probability measure Pi. When a play is to be
realized, the world is in some ω ∈ Ω and each player observes his τi(ω). If a player observes
the signal ti ∈ Ti then he concludes that the real state of the world is in the set τ−1

i (ti). Player
i updates his beliefs over ω ∈ Ω to Pi(ω)/Pi(τ

−1
i (ti)) if ω ∈ Ω and cero otherwise. Bayesian

games are also called incomplete information games in the literature which is different from
the imperfect information game which will be soon defined.
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The normal-form game models situations where players select their actions simultaneously,
or when it does not matter who makes an action first. More realistic and complex situations
involve some notion of temporal structure, or order among the players’ actions. The extensive-
form game attempts to include this notion of order. The standard references for both of this
models are Osborne and Rubinstein (1994), Shoham and Leyton-Brown (2008), Sorin (2003).

Definition 2.13. A perfect information extensive game consists of:

• A finite set N of players.

• A set A of available action.

• A set H of sequences called histories that satisfies:

– The epty sequence belongs to H .

– If (ak)
K
k=1 ∈ H (K can be infinite) and L < K then (ak)

L
k=1 ∈ H .

– If (ak)
∞
k=1 satisfies (ak)

L
k=1 ∈ H for every positive integer L, then (ak)

∞
k=1 ∈ H

• If a history (ak)
K
k=1 ∈ H withK finite and if it doesn’t exist aK+1 such that(ak)

K+1
k=1 ∈ H

then (ak)
K
k=1 is said to be a terminal history. The set of terminal histories is called Z

• A function χ : H → 2A that assigns a set χ(h) of possible actions to be taken after a
history h has occurred.

• A function ρ that assigns to every non terminal history h a player ρ(h) who will choose
an action after history h has occurred.

• A function σ : H × A → H ∪ Z that maps history-action pairs into a new history such
that if σ(h1, a1) = σ(h2, a2) then h1 = h2 y a1 = a2

• For each player i ∈ N a preference relation �i defined over Z.

One way of visualizing this type of games is using a tree, in which each internal nodes are
identified with non-terminal histories and each one of these corresponds to a decision made
by a player. Given a history h in the game, which corresponds to a path in the tree, player
ρ(h) will choose on action from the set χ(h)

In this model, each player knows how did he get up to certain point (knows what history
occured). To allow more generality, we consider cases where each player doesn’t know how he
got up to certain point; i.e., he does not know which history happen and he can’t distinguish
in which node is he.

Since this model is about sequential decisions, it is useful for a player to define a plan
of action for different scenarios, this is called a strategy ; i.e., a plan that specifies the action
chosen by each player for every history after which it is his turn to act.
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3 Problem Statement

3.1 Problem Statement

Let G a causal graphical model and let (A, E , C) a decision problem under uncertainty whose
actions ai = {cj|Ej : j ∈ J} are causally related to consequences c ∈ C through the uncertain
events E ∈ E which correspond to variables in G. Consider a rational decision maker who
doesn’t know the parameters of the causal model which control the probabilities of observing
a consequence given an action a ∈ A, we ask how the decision maker could learn about the
causal structure that controls his environment in order to make good choices with respect to
the decision makers’ preferences.

3.2 Motivation

Decision making under uncertain conditions is a fundamental part of intelligent reasoning
(Lake et al. (2017)). Intelligent agents often face situations where an action must be chosen in
the presence of uncertain conditions; this means that an outcome will be observed according
to some probability distribution given the action chosen by the agent.

In many real-world applications, the agent doesn’t know all of the parameters required
to calculate the maximum utility, but if the agent knew that his actions and the possible
consequences were causally related, then he could attempt to discover this relations and use
them in order to predict consequences of actions better than if he only observes multiple
action-outcome pairs as done in Reinforcement Learning (Sutton and Barto (1998)).

It is known that human beings conceive their actions on the world as intervening in
the world and they even tend to ignore probabilistic information over causal information
(Tversky and Kahneman (1980), Pearl (2009), Hagmayer and Sloman (2009)). Following this
idea, Lattimore et al. (2016) consider decision problems where the action to be chosen is an
intervention over a known causal graphical model. The agent must choose the intervention
that maximizes the value of a target variable after a series of learning rounds. They model
their problem as if choosing an intervention was choosing an arm of a slot machine, in which a
gambler chooses an arm and gets some reward. From the rewards they estimate probabilities
and output an optimal action in the sense of obtaining minimal regret. Their work considers
that the causal model is fully known. They mention that the case where the causal model is
unknown is left as an open question, and it is precisely what we are proposing to answer.

3.3 Justification

Many real-world applications of decision making are solved by associative methods which
capture only statistical patterns that are found in data. For example, current methods in
Reinforcement Learning, and specifically in Deep Reinforcement Learning, although they have
good performance in the task that were supposed to solve, they can not explain why a specific
trajectory was chosen by the algorithm. This is highly relevant in real-world applications such
as self-driving cars, where it is very important to understand why an accident happened.
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For example, as told by Bornstein (2016), at the University of Pittsburgh Medical Center
a team of researchers tried to use Machine Learning to predict whether pneumonia patients
might develop severe complications. For this purpose they trained Neural Networks and
Decision Trees using the hospital’s own data. Neural Networks outperformed Decision Trees,
but only by studying the decisions made by the latter did the doctors find out that the
algorithms instructed doctors to send home pneumonia patients who already had asthma,
despite the fact that asthma sufferers are known to be extremely vulnerable to complications.
The problem relied in the training data, because the hospital policy was to automatically send
asthma sufferers with pneumonia to intensive care, and this policy worked so well that asthma
sufferers almost never developed severe complications. It was only through the interpretability
of the Decision Trees that the doctors didn’t send asthma patients with pneumonia home to
a certain death.

Methods based in Deep Neural Networks aren’t supposed to explain why a certain out-
put was produced since those methods are based in parallel distributed representations and
the same goes for any other learning algorithm that uses Deep Neural Networks, like Deep
Reinforcement learning; when AlphaGo (Silver et al. (2017)) defeated the world-champion,
humanity didn’t learn anything new about the game of Go, because the algorithm was not
designed to explain its moves, it was just curve fitting, although a very sofisticated method
for achieving it. Using only associations between variables it is not possible to infer which
one is the cause and which one the effect, something extra is required. The fundamental
difference between causal and associative models is that causal models consider doing over
observing (Pearl and Mackenzie (2018)). Once a causal relation has been established between
two events, performing, or intervening, over a cause allows to predict the outcome in a more
robust way than if using only correlations between observations.

On the other hand, learning a causal model of an environment and using it to act upon
the environment allows to explain aspects of the model that a purely associative model would
not be abel to explain. It allows to ask why. Since a causal model, once it is learned, does
not depend neither on the agent nor its preferences, the gained knowledge could be easily
transfered for problems of similar domain where the use of the acquired causal relations is
useful.

The impact of Causal Inference goes beyond Machine Learning and Computer Science.
For example, economists are interested in understanding what did certan public policy caused
(Athey (2017)) or how human decision makers that show inconsistent preferences over time
could be oriented if the causal consequences of this inconsistent behavior is introduced into
a decision-making model (Albers and Kraft (2016)). In complex adaptive systems, causal
relations can be used to clarify the complex interactions between agents in the system
(Abbott and Hadžikadić (2017)) as well as for prediction and planning (Hunt et al. (2016),
Brock (2018)).

3.4 Research Question

The proposed research attempts to answer a series of questions about the nature of causal
relations and about their possible use.

18



1. How a rational decision maker who faces an uncertain environment which is governed
by a causal mechanism can learn and make use of this causal structure in order to make
good choices?

2. How can a causal structure help a decision maker in order to guide his learning process?

3. When does causal information will be helpful?

4. What does the rationality assumption implies about how to choose when considering
causal information?

5. How to trade off exploration and exploitation when trying to learn about the causal
structure of an environment while also trying to make good choices?

3.5 Hypothesis

Let G a causal graphical model and let (A, E , C) a decision problem whose actions ai = {cj|Ej :
j ∈ J} are causally related to consequences c ∈ C through the uncertain events E ∈ E which
correspond to variables in G. Then, if a decision maker doesn’t know the probabilities of the
uncertain events in E, by repeatedly making decisions he can learn a causal model of the
environment and use it to find the optimal action (in the sense of expected utility theory) in
less, or equal, rounds than if he doesn’t consider causal information.

3.6 Objectives

3.6.1 General Objectives

The proposed research has as a general objective to provide the understanding and knowledge
about what are the implications of causality for a rational decision maker who faces an un-
certain environment and about how causal relations can be discovered and used in order to
make good choices that maximize the expected utility for the decision maker.

3.6.2 Specific Objectives

In order to achieve the general objective, we need to separate it into smaller problems which
are required to be solved first. Given a scenario which can be modelled as a causal decision
problem:

1. In first place, we require to characterize the problems where this approach can be
used.

2. In second place, it is required to find a general way of defining a game that captures
the interaction between a decision maker and a causal-governed environment.

3. In third place, to find a family of distributions that can represent any past knowledge
and current beliefs about the causal structure of the environment and a way to use
these beliefs in order to make choices according to the decision maker’s preferences.
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4. Beliefs must be updated after external information is provided by the environment in
response to any given action that was taken by the decision maker. A general updating
criteria must be provided which explicitly uses the causal nature of the environment.

3.6.3 Limitations

The proposed research has some limitations. We are considering a rational decision maker
whose preferences can be represented as if maximizing an expected utility with respect to a
subjective probability distribution and an utility that assigns real numbers to possible out-
comes. Maximization of expected utility is not the only decision making criteria as other
theories exist, such as Prospect Theory (Kahneman and Tversky (1979)) where a decision
maker considers a reference point and from there he considers losses more painfull than gains.
Other theory is Gilboa’s Case-Based Decision Theory, where a decision maker considers how
similar is the current decision problem with problems faced in the past.

We consider a particular definition of Causality, which is Spirtes’ definition (Spirtes et al.
(2000)) who defines causality as a stochastic relation between events. We take this definition
of causality as well as its theoretical requirements as axioms and we do not question if it is
the definition most suitable for a certain situation.

We are not considering that the player called Nature has any intentions nor objectives
since we are given her constant payments in every outcome. A scenario where Nature could
have objectives to pursue if it is modelling a player such as a Government, who can only act
according to current laws but has general social objectives, such as the maximization of people
with jobs while negotiation with Unions.

3.6.4 Domain of application

Even if, as argued in the Introduction, causal relations are present everywhere, we do not
pretend that our proposed method can be applied anywhere without further considerations.
For the proposed method to be applied, it is necessary that a Decision Problem exists (i.e., a
non-empty set of available actions exist which is related to a well-defined goal to be achieved),
and that the elements of the decision problem can be causally related through a causal model.
This is, we require:

1. The main task is to choose an action in order to achieve some objective.

2. The set of available actions must have at least one element which is known by the decision
maker.

3. Rational preferences for the decision maker.

4. Known environment.

5. Causal relations in the environment.

6. Decision-making steps in discrete time.
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We must be careful in point number 1, since many problems can have a decision-making step
in its inner workings, or can be formulated in terms of decision-making. For example, one
could say that image segmentation is a decision-making problem where one must choose one
out of many possible segmentations of a given image. Here we are considering problems where
making a choice is the ultimate objective, such as choosing the correct treatment for a sick
patient, choosing stocks to invest, etc.

3.6.5 Extensions

Given the Limitations addressed in the previous section, some possible extensions could be:

• Consider longer games.

• Consider more players than an agent and Nature.

• Consider objectives/intentions for Nature.

• Studying game-theoretical properties of the model such as equilibria in terms of the
causal structure.
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4 Related Work

Reinforcement Learning (RL) has been the standard setting for decision-making and learning
by interaction. In this setting it is assumed that a Markov Decision Process (MDP) is able
to capture the effects of the agent’s actions in the environment. An MDP is composed by a
set of states, a transition function and a reward function, where an agent’s action moves the
state of the environment according to the transition function and obtaining a reward in such
process.

Reinforcement Learning can be roughly divided into two categories: model-based and
model-free methods. In the former case the agent learns an optimal policy from a model of
the environment, such as the Dynamic Programming method explained in Sutton and Barto
(1998). On the other hand, if the agent does not know the transition function, then he must
learn directly values of state-action pairs. A very well known model-free method is the classic
Q-learning algorithm developed by Watkins and Dayan (1992). In either case, model-free or
model-based methods, an agent must use information from transitions or from observations.
For this reason, Reinforcement Learning uses only associative patterns for finding an optimal
policy and this methods can not learn beyond what is expressable by an MDP, which is
constrained into associative rules and can not express any other kind of structure, such as
causal relations.

Since an agent that learns how to act according to any Reinforcement Learning method
acquires an optimal policy, optimal in the sense of satisfying the Bellman equations, it can
be shown that such policies actually achieve the maximum expected utility as required by
the rationality condition (Webb (2007)). In this way, when only associative information is
available, RL is a coherent learning framework. On the other hand, it remains to be answered
how to incorporate a causal model into an on-line decision making algorithm.

The formation and use of causal knowledge in human beings can provide inspiration for our
problem, and it has been extensively studied by York Hagmayer and his team. They have found
that human beings, while facing a sequential decision problem, use and modify causal infor-
mation (Hagmayer and Meder (2008), Hagmayer and Sloman (2009), Hagmayer et al. (2010),
Hagmayer and Meder (2013)). In their studies, all of the subjects were faced with a one-stage
decision problem in which an initial causal model was provided. In several rounds, the subject
made a decision and observed a feedback and was later asked to describe the causal model
they thought controlled the situation. The subjects knew that they were supposed to learn a
causal model, but the case where the final objective is other than directly learning a causal
model has not been studied. Bramley et al. (2015) show that people acquire causal structures
by selecting the most informative options, in the sense of decreasing uncertainty about the
true model instead of maximizing expected utility.

It is also known that human beings focus on local aspects while learning causal relations
that are later unified into a single structure (Fernbach and Sloman (2009), Waldmann et al.
(2008), Wellen and Danks (2012), Danks (2014)). Following this idea, Wellen and Danks
(2012) propose a model to explain how observations and interventions are used by human
beings to learn causal structure when little prior information is available.

An attempt to formalize Decision Theory in the presence of Causal Information was at-
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tempted by Joyce, who stated that a decision maker must choose whatever action is more likely
to (causally) produce desired outcomes (Joyce (1999), Peterson (2017)). His formulation falls
short since he does not consider any kind of formal causal model beyond what is commonly
understood by causality, although he captured the intuition that causal relations may be used
to control the environment and to predict what is caused by the actions of a decision maker.
In his formulation of a Causal Decision Problem, he uses the probability of causing certain
effect with an action, which we refine here with the machinery of Pearl’s Do-Calculus and
Spirtes’ definition of Causality.

In the class of decision problems considered for this proposal it is assumed that the a
rational agent must choose some available action and then receive a reward from it. In the
case where the agent does not has enough information available, we consider a certain number
of learning rounds and expect the agent to output a good action. Problems of this nature have
been modelled as bandit problems (Sutton and Barto (1998)). A bandit is an analogy of a slot
machine as the ones found in Las Vegas, where a lever is pulled an some monetary reward
(probably cero) is observed. A bandit problem consists by a set of available actions (the arms
of the slot machine) and a reward function. It has been shown that the probability of the
action selected in the n-th round not being optimal has an upper bound (Audibert and Bubeck
(2010)), if the optimality criteria is choosen to be the minimal regret which is basically the
difference of the theoretical mean reward of the optimal action and the chosen action. On
the other hand, if the largest mean reward is desired with a fixed confidence of δ, then an
algorithm for finding the optimal action exist in such a way that the number of rounds to
find it is within a constant factor of a lower bound (Jamieson et al. (2014)). If one does
not consider a fixed confidence but instead a fixed number of learning rounds (known as
fixed budget), then we face a fixed budget problem where a lower bound for the probability of
finding the optimal arm is given by Carpentier and Locatelli (2016). For the case of unobserved
confounders Bareinboim et al. (2015) propose a new metric for bandit algorithms to optimize
which achieves better experimental performance.

Notice that none of the previous works consider any kind of causal structure. For this
kind of problems, causal relations between actions and consequences could be considered, in
this way an action could be conceived as an intervention over some environment, which is in
fact how humans consider actions in the world (Hagmayer and Sloman (2009)); they use and
modify causal knowledge during a sequential decision making process (Hagmayer and Meder
(2013)). Consider a set of variables that are causally related between them and to a reward
variable whose value has to be maximized by intervening one of the variables. It is shown
by Lattimore et al. (2016) that adding causal information in a fixed budget decision problem
allows the decision maker to learn faster had he not considered causal information. Their
work requires that the causal model is fully known to the decision maker, this requirement
is relaxed later by Sen et al. (2017) who requires only that some part of the causal model is
known and allow interventions over the unknown part.

In Lattimore et al. (2016) a causal graphical model G is assumed to be known and a
number of learning rounds T is fixed. In round t ∈ [1, ..., T ] the decision maker chooses
at = do(Xt = xt) and observes a reward Yt. After the T learning rounds, the decision maker
is expected to choose an optimal action a∗ that minimizes the expected regret, which is defined
as RT = µ∗ − E[µa∗ ] where µ∗ = maxE[a]. They show that the achieved regret is of a smaller
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order than the regret obtained by non-causal algorithms. Discovering the causal model itself
while using current knowledge to make choices is left as future work in both Lattimore et al.
(2016) and Sen et al. (2017).

Algorithms to discover causal relations in data can be found in Spirtes et al. (2000),
Eberhardt (2008a), Hauser and Bühlmann (2012), Hyttinen et al. (2013), Loh and Bühlmann
(2014), Shanmugam et al. (2015) Mooij et al. (2016). The most famous of them being the
PC-Algorithm (Spirtes et al. (2000)) which is a constraint-based method for causal discovery,
and has an exponential worst-case running time. The PC-Algorithm is based in the Induc-
tive Causation Algorithm proposed in (udea Pearl (1990)). In Hauser and Bühlmann (2012)
an active learning approach to prove a conjecture stated in Eberhardt (2008b) about the
worst-case number of experiments required to uniquely discover a causal graph (up to Markov
equivalencies)

Also, an active learning approach can be used to learn causal models from data, where
one starts with some initial graph and then select the instances in the data that allow
to add and orient edges in order to end with a fully oriented graph. Active learning
algorithms for causal discovery can be found in Tong and Koller (2001),Murphy (2001),
Meganck et al. (2006), He and Geng (2008), Hauser and Bühlmann (2012), Ness et al. (2017),
Rubenstein et al. (2017).

Notice that these papers consider learning while interacting with a causal environment.
We propose to model this interaction as a game, which has been previously considered in
Werling et al. (2015), who consideres an on-line classification problem and modeled it as a
game and where an oracle is used to classify initial observations.

In this research we are looking for a methodology that will allow to discover causal structure
from an uncertain environment while also using it to obtain a reward. Being able to discover
the causal structure at the same time that it is being used will allow to eliminate the restriction
of knowing the full causal model or part of it.
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5 Methodology

In this section we describe the steps that are to be followed in order to answer the Hypothesis.

5.1 A guiding principle for a Causal Decision Problem

We propose the following principle as a normative guide for how causal information must be
used in order to find a solution to a decision problem where the preferences of the decision
maker are assumed to be rational. We consider only the case where the decision maker’s utility
is given by the outcome of a {0, 1}-binary variable.

Proposition 5.1. Let G a causal graphical model and let (A, E , C) a decision problem under
uncertainty whose actions ai = {cj|Ej : j ∈ J} are causally related to consequences c ∈ C
through the uncertain events E ∈ E which correspond to variables in G. Let Y a variable in G
the variable whose realizations correspond to the consequences of the decision problem once
the agent has chosen an action a ∈ A and assume that Y only takes values in the set {0, 1}
where Y = 1 is the most desired outcome for the agent. Then, the solution for this decision
problem is given by the action a∗ ∈ A that satisfies:

P (Y = 1|do(a∗) ≥ P (Y = 1|do(a)) for all a ∈ A, (2)

where P is a probability distribution which encodes the agent knowledge, or beliefs, about the
causal relations that hold in his evironment.

5.2 Modelling a Decision Problem under Uncertainty as a Game

Consider a decision problem under uncertainty (A, E , C,�) where the available actions A to a
decision maker are causally related to the outcomes C and this causal relations are captured
by a Causal Graphical Model G. The Causal model is assumed to remain fixed and unknown
to the decision maker, who is assumed to be rational and aware of the causal nature of the
decision problem he faces.

As stated in the Hypothesis, we propose that the agent learns from the environment by
interacting with it. By interaction we mean a number of rounds where the decision maker will
act and then observe the outcome of his action.

Since the observed outcomes, given an action, are guided by the Causal Model, we can
think of the environment as a decision maker whose available actions depend on what has
been chosen previously by the original decision maker. We have mentioned that Game Theory
allows to model situations where two or more decision makers interact. In this way, the
first step in order to solve the stated problem is to model the interaction of the (original)
decision maker and his environment as a game between two players: the decision maker, and
a player which will be called Nature, whose actions are to be guided by the causal model.
Since in decision problems under uncertainty it is assumed that the state of the environment
is unknown, we will assume that player Nature has the first move and he assigns some state
to any of the variable in the causal model G.
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After the decision maker makes his play, Nature will respond to the action selected accord-
ing to the causal relations expressed by G. This action-response dynamic forces to consider
some notion of order between the players’ moves, and because of this reason we must use the
extensive-form games described in Section 2.9.1.

We are considering each game as a learning round, where the only information that is
carried from a game to another is what is learned by the decision maker via a process of
belief updating. The causal model is assumed to remain fixed and each initialization at the
beginning of each new game is independent from any past outcome.

The extensive-form game considers two possibilities: perfect or imperfect information,
where in the latter a player may not know what actions have been played in the past by other
players, which is what we need to use because the decision maker does not know what move
has Nature selected.

5.2.1 Elements of the Game

The game which will be used to model the interaction between a decision maker and his
environment is composed by:

• Players: The decision maker and a player called Nature, who will move first in order
to assign a state.

• Actions: The actions available to the decision maker are the same ones as in the original
decision problem. Nature must choose according to the causal model.

• Preferences: The preference relation to the decision maker is his same rational prefer-
ence relation as in the decision problem. Nature is indifferente between outcomes.

5.3 Belief Formation

Once a Game which models the agent-environment interaction is defined, we must turn to the
issue about learning about the environment, which includes acquiring causal information and
also using current causal knowledge in order to obtain new information.

For the agent to learn and reason about the plays of Nature we assume that he is able
to observe the final outcome of the game, which includes knowing about the inicial uncertain
state that Nature assigned. The agent, at the beginning of the game is uncertain about the
state of the environment which he is facing, but he still must take an action, so in order to
allow the decision maker to use his knowledge to act, he will have beliefs about any relevant
aspects of the environment which he will use as if they were the true model in any given play.
These beliefs will be updated according to what is observed at the end of each move. The
second step is to find a way to specify beliefs about causal structure.

Beliefs represent ignorance about relevant characteristics of certain environment
(Bernardo and Smith (2000), Peterson (2017)), and thus are encoded as probability distri-
butions, which usually come from a parametric family.

In our proposed research, beliefs will encode current knowledge about the causal structure
of the environment, and this beliefs will be updated when information about actions-outcomes
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becomes available, which will happen at the end of each game. The representation of the
beliefs must allow them to be used in order to make a choice using the causal information
they represent in each round.

Beliefs must also encode any previous knowledge possesed by the decision maker, and this
initial assignment must be coherent with the actions prescribed with the rationality axioms
for preferences. In Billot et al. (2005) is shown how to build a set of beliefs given a set of past
observations in an axiomatic way.

5.4 Belief updating

The whole idea is that a decision maker is able to learn from his environment by observing,
and reasoning about, the effects of his actions. The observed information will modify his
current knowledge, which is encoded as probabilistic beliefs about the environment in a way
that is similar to how human beings modify causal knowledge while intervening in the world
(Hagmayer and Meder (2013)).

If a decision maker encodes his current knowledge, and ignorance, about some relevant char-
acteristic of his environment, then it is known that belief updating using Bayes’ Theorem is the
only way of updating that is coherent with the rational preference axioms (Bernardo and Smith
(2000)).

Bayesian updating is also of great importance in the theory of Learning in Games
(Fudenberg and Levine (1998)) since it is known (Shoham and Leyton-Brown (2008)) that
if all the players in a game perfom Bayesian updating, then the plays generated by these
measures converge to the plays that would be generated if all players shared their knowledge.

Even though we know that Bayesian updating is the correct framework for belief updat-
ing, it remains unanswered how to concretely use causal information in order to update the
parameters that control the distributions used to express beliefs in a tractable way. There-
fore, the third step is to find an updating criteria with theoretical properties that guarantee
convergence to the true causal model that controls the environment. The updating criteria
must explicitly use causal information beyond any associative rules.

5.5 Solving first simpler cases

Once that the model has been established, we proceed to further examine the problem of
acquiring and using causal information in a decision problem and we notice three important
cases, in order of ascending difficulty. In all three cases we consider a decision maker who faces
an uncertain environment and who must take an action in order to satisfy his preferences. The
uncertain environment in which the decision maker (or agent) exist is governed by a causal
graphical model G which relates actions taken by the decision maker with outcomes. We are
assuming that one of the variables of the casusal model is of interest for the decision maker in
the sense that he seeks to maximize its value. This variable will be known as target variable
or reward variable.

The three cases that we notice are:

1. The decision maker knows the causal model.
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2. The decision maker knows only the graphical structure of the causal model.

3. The decision maker knows nothing about the causal model.

In the following we show how the first two cases, which are particular cases of our general
problem, can be solved and we show that the proposed solution for the first two cases sheds
light on how the general case could be solved.

5.5.1 Fully knowing the causal graphical model

If the decision maker knows the causal graphical model, then following the guiding principle,
he could easily calculate the effect on the target variable that any of his actions has and
then choose the action that has the highest probability of causing a desired value of the
target variable. The decision thus made is the one that maximizes the expected utility, by
construction. Also, choosing this action is the best response action, and therefore a Nash
equilibrium for the game. Choosing the action that is more likely to produce the most desired
outcome according to current causal knowledge is required by Joyce’s Causal Decision Theory
(Joyce (1999)).

5.5.2 Knowing only the graph structure

If a decision maker knows the structure of the graph, but he does not know the parameters,
then he encodes this ignorance, along with any useful previous knowledge, as a probability
distribution over a suitable space. In the preliminary results, which will be shown later, a
particular case is considered, where the beliefs have the form of a Dirichlet distribution for
each of the Conditional Probability Tables that characterize a Bayesian Network.

In general, what must be specified is a way of encoding current causal knowledge into a
probability distribution in such a way that a local (i.e. in each round) causal model can be
obtained from current beliefs in order to make a decision using current causal knowledge and
those beliefs will be later updated using what is observed after choosing an action. The action
will be chosen, given a set of beliefs, as in the previous case and by following the guiding
principle. This means that using current beliefs, the agent forms a causal model which is used
as if it were the true causal model.

5.5.3 General case: Model unknown

The previous two cases are per se steps of the methodology, rather simplifications in order to
understand what is happening. The real deal is the case where the causal model is unknown.
When the causal model is unknown, two cases of interest appear, depending if the decision
maker knows the (maximum) number of variables in the model or not.

If the maximum number of variables is assumed to be known by the decision maker,
then the situation simplifies since a decision maker could generate distributions that repre-
sent causal relations among variables. For example, a Dirichlet Process (Ferguson (1973),
Ghosal and van der Vaart (2017)) could be used to generate Dirichlet distributions that are
used generate Conditional Probability Tables in order to specify a causal model as in the
previous case.
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If the number of variables is unknown, then the beliefs that the decision maker holds must
allow unbounded cardinality on the number of variables. In that case, a distribution over a
graph space could be used in such a way that when sampled a graph structure is obtained and
used as in the previous case.

5.6 Balancing exploitationd and exploration

When the model is to be discovered, such as in the general case mentioned before, an agent
must choose also between keep making an intervention in a variable that is known to cause
a desired output or to explore for new variables that could bring even better rewards, but
at the cost of not having best performance while looking out for them; this is known as
the exploration vs exploitation dilemma (Sutton and Barto (1998)). This question is to be
attacked using the concept of mixed strategy in a game. A mixed strategy is a probability
distribution over available actions for an agent, in this way, similar to the ε-greedy methods in
Reinforcement Learning, we allow for some actions to be randomly choosen in order to explore
further possibilities.

5.7 Validation of the proposed methods

In order to show that an agent has succeeded in acquiring a causal model from his environment
via interacting with it and using it in order to make good choices, it is necessary to compare
the average utility obtained in a series of rounds with the theoretical utility that would be
obtained if the causal model was fully known, and to compare the performance obtained by a
learning agent that is not considering causal information. Also, the parameters of the learned
causal model must be close to the true ones.

5.8 Experimental methodology

The proposed methodology will be tested in the following way: A fully specified causal model,
which satisfies the conditiones required above, will be given and used as a ground truth. The
causal model will not be available to the decision maker, since one of the basic assuptions is
that the agent does not know the causal model that controls his environment. The true causal
model will be used to simulate realizations of the other variables in the distribution given any
action taken by the decision maker.

One, or more, of the variables is to be selected as available to interventions by the decision
maker, the set of possible values for the selected variable determines the set of available actions
of the decision maker in the formulation as a game. Also, another variable is selected as a
target variable, preferably an endogenous variable in the model in order to be affected by any
action taken by the agent. The set of possible values of this variable must be in correspondance
with the set of outcomes of the decision problem that the agent faces so the value that the
target variable outputs has an effect over the preferences of the agent.

A distribution with initial parameters θ0 will be specified.
Given a number T of rounds, and in round t ∈ {1, 2, ..., T} the agent will make an action

a ∈ A and then observe the state of the other variables of the model. Using this information,
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current beliefs will be updated according to the criteria to be established.
The chosen actions will be compared to classic on-line decision making

5.8.1 Internal Validation: Reproducibility

For the results obtained by following the methodology described in previous sections be re-
producible, the causal model used to simulate an environment must be fully specified by
describing the probabilistic parameters that control it. The initial distributions given to the
decision maker to encode his beliefs must be shown as well with the updating criteria used
when information from the environment becomes available.

5.8.2 External Validation: Different problems

For the proposed method to be tested in different decision problems, it is required that the
correspondent causal model satisfies all of the conditions previously described, and any derived
algorithm will be designed in such a way that the characteristics of the causal model are an
external input. In this way, if an external user is able to give a causal model, the method is
expected to work independent of the particularities of the causal model which is being tested.

5.8.3 Concurrent Validation

Concurrent validation will be tested by comparing the performance obtained by the proposed
method against the theoretical optima.

5.9 Working plan

Concrete steps towards solving the problem:

• Literature review, understanding the problem, considering several models and possible
solutions.

• Studying implications of the rationality assumption for decision making under uncer-
tainty in causal environments.

• Formalization of a Causal Decision Problem: a decision problem under uncertainty where
causal relations are encoded into a Causal Graphical Model. Propose a solution using
the rationality assumption.

• Propose a representation of beliefs that allow causal structure to be considered. Three
subcases considered. Conference Paper No. 1

• Propose and evaluate an updating criteria for causal beliefs that can be updated ac-
cording to new information when involved variables are known. Conference Paper No.
2

• Study the problem of on-line causal discovery (fully unknown model). Convergence of
proposed solution. Conference Paper No. 3 and Journal Paper.
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• Considering interventions in more than one variable.

5.9.1 Publications plan

• Year 1:

1. Gonzalez-Soto, M., Sucar, L.E., Escalante, H.J., Playing against Nature:
causal discovery for decision making under uncertainty. Accepted for pre-
sentation at the CausalML 2018 Workshop at ICML 2018 in Stockholm,
Sweden.

• Year 2: Conference Paper 2 and 3

– The implications of Rationality and Causal Relations for Decision Making: a general
principle for Decision under Uncertainty. Possible Forum: Conference on Uncer-
tainty in Artificial Intelligence (UAI), International Conference Machine Learning
(ICML), NeurIPS.

– When variables of the environment are unknown how to encode prior beliefs and
how to update them when data is not fully observed.

• Year 3: Journal Paper

– Aim: Theoretical paper of results for on-line causal learning.

Figure 1: Gantt Diagram for the proposed research
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6 Preliminary Results

To show the factibility of this proposal, we considered a test scenario and two cases in ascending
difficulty.

6.1 Test scenario

Consider a sick patient who arrives at a hospital and he either has disease A or disease B.
The doctor can either give him some pill or send him into surgery. Both treatments entail
risks and whether the treatment cures the patient or not depends on which disease it had
originally. The doctor could be facing a mutation from a known disease, so she has some
knowledge about what could happen if a treatment is given to the patient. Using her previous
knowledge as a true model, she can choose a treatment and observe the outcome from which
she will learn about this disease, so she could make a better decision the next time a similar
patient arrives.

The causal model that governs this situation is shown in Figure 2. The parameters for
this model were fixed intuitively in such a way that each treatment is effective for only one
disease, but the most effective treatment is riskier.

The variables in the model are:

• Disease: Either A or B.

• Treatment: Either pill or surgery.

• Reaction: Either dying or surviving.

• Lives: Either living or dying.

The variables are causally related as shown in Figure 2.
The variable Lives is the target variable and, in this example, the only variable that can be

intervened upon is the variable Treatment. The decision maker prefers an outcome in which
the patient lives.

In this scenario, Nature’s move will consist in randomly assigning a disease to the patient.
Then, the medic will asign a treatment using his current beliefs about the disease and the
possible outcomes. The decision nodes for this play of the medic form an information set
because the medic doesn’t know how she arrived there since she doesn’t know what disease
did Nature assign. Finally, Nature will sample the consequence of the treatment from the
causal model and the medic will observe the outcome.

For this test scenario whose causal graphical model is shown in Figure 2, we see by applying
the Pearl’s do-calculus that the interventional distribution Pdo(Tr)(Y ) is given by

P (Y |do(Tr)) =
∑

R,D

P (Y |D, Tr, R)P (R|Tr)P (D). (3)
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Figure 2: Causal graphical model for the test scenario: the target variable Lives is causally influ-
enced by the disease the patient has, the treatment assigned and the survival to the secondary effects
of treatment.

In fact, from the structure of the model, which is shown in Figure 2, we see that the involved
probabilities in any calculations are:

P (disease), P (treatment), P (reaction|treatment),

and
P (lives|disease, treatment, reaction).

We can also see that the joint distribution for all of the variables can be expressed as

P (Y,D, Tr, R) = P (Y |D, Tr, R)P (R|Tr)P (D)P (Tr). (4)

This expression will be useful when specifying beliefs about the model as probability distribu-
tions.
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6.2 Case 1: The causal model is completely known

If the causal model is completely known to the decision maker, then in one step she can obtain
the probability for her desired value of the target variable, which in this case is the value
corresponding to the outcome in which the patient lives at the end. Using this probability,
she can choose which treatment to assign. Since this action maximizes the probability of the
occurence desired value, it maximizes the expected utility, and it is also a best response to the
player Nature.

6.3 Case 2: Only the structure is known

Since the decision maker knows the graph structure, he can explicitly find a non interventional
expression for the interventional distribution and update his beliefs about these unknown
quantities. If the decision maker were not allowed to know, at the end of each round, the play
of the Nature then this will have to be estimated as a hidden variable using, for example, the
EM algorithm Dempster et al. (1977), but meanwhile we are assuming that this information
is available at the end of each round.

Given the structure of the model; i.e., the variables in it and the directed edges, the joint
distribution of those variables can be expressed as a product of the form P (Xj|Pa(Xj)) where
Pa(Xj) are the parents of Xj in the underlying DAG in G. Since these distributions fully
characterize the model, the decision maker will have beliefs over each one of these parameters.
Notice that each of these parameters is itself a distribution of length equal to the number
of possible values of the variable which is being conditioned, call the maximum number of
possible values k .

A distribution suitable to modelling discrete probability vectors is the k-dimensional Dirich-
let distribution, whose support is the set of probability vectors of length k Hjort et al. (2010).
The k dimensional Dirichlet distribution has a density f with respect to the Lebesgue measure
given by

f(x1, ..., xk|αi, ..., αk) =
1

B(α)

k∏

i=1

xαi−1
i (5)

where (x1, ..., xk) are such that
∑k

i=1 xi = 1 and α = (α1, ..., αk). The Dirichlet distribution
is useful since it is conjugate for itself Bernardo and Smith (2000).

The decision maker will have beliefs about the CPT’s in the form of parameters of several
Dirichlet distributions. Using the agent’s current beliefs, a causal graphical model can be
specified. Using this fully specified (structure + parameters) as a true model, the decision
maker will make his choice as in Case 1. When the decision maker observes the value of the
target variable, he will update the parameters that specify his beliefs.

Previously we argued that the agent’s beliefs were going to be distributions over a suitable
space, but what is going to be updated are the parameters of such distributions. Namely, the
α corresponding to the Dirichlet random variable assigned to each CPT.

For the belief updating, given a new data point, two cases must be considered:

• The variable to update has no parents.
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• The variable to update has parents.

In the first case, if a prior Dirichlet(α) is used, then the posterior is given by

Dirichlet(α + c) (6)

where c is a vector of the number of occurrences of that observed data point.
For the second case, we must consider both the occurrences of that data point as well

as the parents for each of the variables. Following Barber (2012) we denote as θi(X, j) the
number of times the event {X = i|Pa(X) = j} is observed. In this case, if the prior of Xi

conditioned on its parents having the value j is given by a a Dirichlet(α), then the posterior
for the variable Xi given an observed data point is given by

∏

j

Dirichlet(α + θi(·, j)). (7)

6.3.1 Implementation

We begin with a random assignment of the α parameter for each of the distributions considered.
We use Dirichlet distribution for each of the conditional probability tables that appear in the
factorization of the joint probability for the graph of G. Since each of the variables in the
model is binary, then the product of these Dirichlets is Dirichlet.

With this parameters, the decision maker forms a causal model and chooses the action
that maximizes the probability of the desired value for target variable as in Case 1. With
this action chosen, we simulate an outcome from the causal graphical model using the chosen
action as an intervention. This evidence is used to update the parameters, which then will be
used to generate a new causal model, and so on.

We show the results of two experiments. We compare the performance obtained by the
causal agent, a random agent who selects his actions at random, and an agent performing
Q-learning (Watkins and Dayan (1992)). Q-learning was chosen since it learns an optimal
policy in the sense of the Bellman Equation (Sutton and Barto (1998)) and it is shown in
Webb (2007) that such optimal policies also maximize expected utility.

The average performance over 20, 50, 100 and 200 rounds is shown in Figure 2 - 5.

Figure 3: Average reward in 20 rounds Figure 4: Average reward in 50 rounds
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Figure 5: Average reward in 100 rounds Figure 6: Average reward in 200 rounds

We observe that when the number of rounds is small, as in Figure 2, Q-learning outperforms
our method, which achieves similar performance than the random-acting agent. On the other
hand, in 50 rounds (Figure 3), our Causal Agent and the Q-Agent have left behind the Random
Agent, which is even more noticeable by 200 rounds. This means that our agent (Causal Agent)
is both learning a good action while learning a Causal Model of the environment that he is
facing.

6.4 Case 3 and future work: The model is not known

The causal model were fully unknown, the decision maker will have to deal with the problem
using only any previous knowledge and her own intuitions. Again, any previous knowledge
and considerations will be expressed as beliefs about the uncertainties in the environment,
which will take the form of a probability distributions over a suitable space.

As in the previous case, we consider a repeated game where the base game consists of
Nature assigning a random state of the environment and responding to the agents choices
with the effects that were caused by her decisions. In this game, as well as in the previous one,
the decision maker will attempt to learn by updating, and using, beliefs in a suitable way.

The most notable difference with the previous case is that the structure of the model is
also to be learned in such a way that both the structure and parameters converge to the true
model in the limit. In the previous case the decision maker knew the form of the Conditional
Probability Tables (CPT) involved in any calculation. In this case, she doesn’t know the
structure of the DAG so which CPT’s are involved is unknown.

If the decision maker knew which variables appear in the true model that governs the
environment, even though she didn’t know how they are connected, she could use a Dirichlet
Process to generate Dirichlet distributions and generate causal graphical models the same way
as in Case 2 and updating the parameters of the process using the observed information. The
Dirichlet Process7, which was introduced by Ferguson (1973), is random measure defined over a
space S such that for each partition B1, ..., Bk the vector (G(B1), ..., G(Bk)) follows a Dirichlet
distribution Hjort et al. (2010), Müller et al. (2016), Ghosal and van der Vaart (2017).

7with parameters M,G0
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Belief updating using causal information when the decision maker current knowledge is
specified as a Bayesian Nonparametric Prior (BNP) is yet to be studied and left as future
work, since the construction and use of this kind of priors is a hard problem, this is because a
BNP is basically a probability distribution over infinite-dimensional spaces, such as the space
of continuous functions or the space of unbounded graphs (Hjort et al. (2010), Phadia (2015),
Ghosal and van der Vaart (2017)).
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7 Conclusions

We have proposed that an autonomous, rational agent who faces an uncertain environment
which is governed by an unknown causal mechanism can make use of the causal relations that
hold in such environment in order to find an action that will take him into the way of a desired
result, in terms of his (rational) preferences. Also, causal information can be acquired while
interacting with the environment and this newly acquired information will enrich the decision
making procedure.

We have taken inspiration in how human beings use causal information when interacting
with the world, which has a complex causal structure, in order to pursue objectives. Following
this intuitions we proposed a guiding principle to exploit causal information that must be
followed by a rational agent in order to be coherent with the definition of rationality. From the
guiding principle we stated a systematic approach into causal decision making and considered
three cases to be solved in order. In two of the three cases we showed that a performance
similar to classical decision-making algorithms can be achieved while also learning a causal
model from the environment. We are considering. If this research is allowed to continue, we
will delve into general settings that resemble realistic situations in which the causal model
that controls an environment is barely known.
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